Implementing PDR in CPAchecker

Gernot Zorneck

Faculty of Computer Science and Mathematics University of Passau

September 23, 2016

Outline

Introduction

2 Preliminaries

Original PDR

- Concepts
- Algorithm

PDR on Control Flow Automata : IC3CFA

- Changes to standard PDR
- Example
- Implementation

Outline

Introduction

2 Preliminaries

Original PDR

- Concepts
- Algorithm

4 PDR on Control Flow Automata : IC3CFA

- Changes to standard PDR
- Example
- Implementation

Summary

Original IC3

Overview

- IC3 : Incremental Construction of Inductive Clauses for Indubitable Correctness
- Also known as PDR : Property Directed Reachability
- Aaron Bradley : "SAT-Based Model Checking without Unrolling", VMCAI 2011
- Symbolic model checking algorithm for finite state systems (bit-level)
- Based on SAT solving, (relative) inductivity, backward analysis
- No unrolling of transition relation needed
- Highly incremental lots of small SAT-queries
- Quickly became a staple part in most modern model checkers
- Adapted to infinite state systems such as software (C-programs, ...)

Inductive Strengthening

- Property is inductive ⇒ property is invariant
- But : Not every invariant property can be proved by induction

Inductive Strengthening

- Property is inductive \Rightarrow property is invariant
- But : Not every invariant property can be proved by induction
- Idea : Strenghten property

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 \qquad \text{vs.} \qquad \sum_{i=1}^{n} \frac{1}{i^2} \le 2 -$$

n

Inductive Strengthening

- Property is inductive \Rightarrow property is invariant
- But : Not every invariant property can be proved by induction
- Idea : Strenghten property
- Math example : $\sum_{i=1}^{n} \frac{1}{i^2} \le 2$ vs. $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 \frac{1}{n}$
- Plan : Create strengthening of property and prove it by induction
- This will prove the property

Outline

3 Original PDR

- Concepts
- Algorithm

4 PDR on Control Flow Automata : IC3CFA

- Changes to standard PDR
- Example
- Implementation

Summary

Preliminaries

Literal/Clause/Cube

- A *literal* is a propositional variable or its negation (*x*, ¬*y*, ...)
- A *clause* is a disjunction of literals $(x \lor \neg y)$
- A *cube* is a conjunction of literals $(x \land \neg y)$
- Therefore, the negation of a cube is a clause $(\neg(x \land \neg y) \equiv (\neg x \lor y))$

Transition System

- A Transition System $S: (\bar{x}, I(\bar{x}), T(\bar{x}, \bar{x'}))$ consists of

 - the initial configuration of the system $I(\bar{x})$
 - the transition relation $T(\bar{x}, \bar{x'})$

Preliminaries - Cont.

(Relative) Inductivity

Given a transition system $S : (\bar{x}, I(\bar{x}), T(\bar{x}, \bar{x'}))$:

- *P* is inductive, if $I \Rightarrow P$ and $P \land T \Rightarrow P'$
- *P* is inductive *relative* to *F*, if $I \Rightarrow P$ and $F \land P \land T \Rightarrow P'$

Safety property : P

A boolean formula that is always true for a given transition system

Inductive Strengthening

An inductive strengthening of a safety property *P* is a formula *F*, so that $F \land P$ is inductive

Preliminaries - Cont.

State

Assignment of values to **all** state variables of the transition system. Represented by a cube

Control Flow Automaton (CFA)

A Control flow automaton $A = \{L, G, I_0, I_E\}$ consists of

- a set of locations *L* = {0,...,*n*} representing the program counter
- edges from G ⊆ L × QFFO × L labeled with quantifier-free first order formulas describing the transition
- an initial location Io
- an error location I_E

Outline

Introduction

2 Preliminaries

Original PDR

- Concepts
- Algorithm

PDR on Control Flow Automata : IC3CFA

- Changes to standard PDR
- Example
- Implementation

Summary

General Concepts

Frame : F_i

- Overapproximation of reachable states in at most i steps from initial states
- · Set of clauses (act as constraints regarding reachability)
- As formula : conjunction of clauses (CNF)

Counterexample to Inductiveness : CTI

State that can reach a non-property state (bad state) in one or more steps

General Concepts

Frame : F_i

- Overapproximation of reachable states in at most *i* steps from initial states
- · Set of clauses (act as constraints regarding reachability)
- As formula : conjunction of clauses (CNF)

Counterexample to Inductiveness : CTI

State that can reach a non-property state (bad state) in one or more steps

- Maintain series of stepwise overapproximations F_0, \ldots, F_k for increasing k
- $F_0 = I$ and initially $F_i = P$ for $i \neq 0$ (assume *P* is invariant)
- Continuously refine frames by adding reachability information
- Derived from recursively backward-analyzing CTIs

General Concepts

Basic Invariants

- $F_0 \Leftrightarrow I$
- $F_i \Rightarrow P$, $\forall 0 \le i \le k$ "every frame satisfies P"
- $F_i \Rightarrow F_{i+1}$, $\forall 0 \le i < k$ "every F_{i+1} is more general than F_i " *clauses*(F_{i+1}) \subseteq *clauses*(F_i)
- $F_i \wedge T \Rightarrow F'_{i+1}$, $\forall 0 \le i < k$ "states in F_i transition to states in F_{i+1} "

General Concepts

Basic Invariants

- $F_0 \Leftrightarrow I$
- $F_i \Rightarrow P$, $\forall 0 \le i \le k$ "every frame satisfies P"
- $F_i \Rightarrow F_{i+1}$, $\forall 0 \le i < k$ "every F_{i+1} is more general than F_i " clauses(F_{i+1}) \subseteq clauses(F_i)
- $F_i \wedge T \Rightarrow F'_{i+1}$, $\forall 0 \le i < k$ "states in F_i transition to states in F_{i+1} "
- \Rightarrow Fixpoint reached if \exists *i* so that $F_i = F_{i+1}$
- \Rightarrow Property holds
- \Rightarrow *F_i* is an inductive strengthening of the safety property P

PDR : Identify CTIs

Algorithm

check for 0-/1-step counterexample $(I \land \neg P / I \land T \land \neg P')$

for k = 1 to . . .

- while (CTI exists $\equiv F_k \land P \land T \Rightarrow P'$ not true)
 - get CTI s from model
 - % Blocking Phase %
 - prove s is unreachable in ≤ k steps (this is where new clauses are learned)
 - if not possible \rightarrow error found
- % Propagation Phase %
- for *i* = 1 to *k* and all clauses **c** in *F_i*
 - if **c** became inductive

 \equiv $F_i \land c \land T \Rightarrow c'$ is true : add **c** to F_{i+1}

• if \exists *i* so that $F_i = F_{i+1} \rightarrow$ property holds

Blocking a state *s* at F_i : Proof Obligation (*s*, *i*)

Block state *s* at $F_i \equiv$ Prove *s* is unreachable in $\leq i$ steps

- If i = 0 and s intersects with initial states \rightarrow error found
- Check : $\neg s$ inductive relative to $F_{i-1} \equiv F_{i-1} \land \neg s \land T \Rightarrow \neg s'$ is true
- No : try to block predecessor p of s at F_{i-1} first (DFS).
 Add Proof Obligations (p, i 1) and (s, i)
- Yes : add $\neg s$ to all frames F_1, \ldots, F_i . Also add PO (s, i+1) if i < k
- Pick PO with lowest frame number next
- Retry previously failed attempts until s could be blocked at F_i

Algorithm : Important Improvements

Generalization

- Blocking one state s at a time is ineffective
- When adding ¬s at level i : find c ⊆ ¬s that is still inductive and add c instead
- *c* may exclude many more states than $\neg s$ $[(\neg x \lor y) \rightarrow \neg x]$
- Drop literals that don't actually contribute to result of induction query $F_{i-1} \land \neg s \land T \Rightarrow \neg s'$
- Use unsat-core, ternary simulation, ...

Algorithm : Important Improvements

Lifting

- Similar intention as with generalization
- When computing a predecessor *p* of state *s* : find **set** of states that also transition to *s*
- Represented by a sub-cube of p

Subsumption

- Suppose $F_i = \{s\}$ with $s = x \lor y$ and we can add $\hat{s} = x$
- Note that $\hat{s} \Rightarrow s$ (or alternatively *literals*(\hat{s}) \subset *literals*(s))
- s doesn't represent more reachability info than \hat{s}
- Simply remove s
- Avoids redundancy and keeps frames small (easier SAT-queries)

Outline

Introduction

Preliminaries

Original PDR

- Concepts
- Algorithm

PDR on Control Flow Automata : IC3CFA

- Changes to standard PDR
- Example
- Implementation

PDR on Control Flow Automata

Based on "IC3 Software Model Checking on Control Flow Automata" by T. Lange et al.

- Apply PDR directly to CFA
- Use SMT-solver instead of SAT-solver
- Check reachability of error location
- Use single transitions between locations (no unrolling needed)
- Create frames F_0, \ldots, F_k for **every** location
- Represents k-step reachability for this location, starting at l₀

PDR on Control Flow Automata

Based on "IC3 Software Model Checking on Control Flow Automata" by T. Lange et al.

PDR Relative Inductivity Check

When trying to block a state s at level $i \equiv (s,i)$

• $F_{i-1} \wedge \neg s \wedge T \wedge s'$ (meaning : $F_{i-1} \wedge \neg s \wedge T \Rightarrow \neg s'$)

Adjusted Relative Inductivity Check

When trying to block a state *s* at location *l* at level $i \equiv (s, l, i)$

- Case 1 : F_{i-1,l_pred} $\land T_{l_pred \rightarrow l} \land s'$, if $l \neq l_pred$
- Case 2 : $F_{i-1,l_pred} \land \neg s \land T_{l_pred \rightarrow l} \land s'$, if $l = l_pred$

where *I_pred* is a predecessor location of *I*.

- Unsat \rightarrow add $\neg s$ to all $F_{j,l}$ where $j \leq i$
- Sat → get predecessor state p and add POs (p, I_pred, i 1) and (s, l, i)

Example

x = 0 x = 0 $(I_1) = [x \neq 1]$ x + 1 [x = 1] (I_E)

Initialization

- No 0-/1-step counterexamples
- *F_{i,l}* = *true*, for all locations *l* and levels *i* (we have no known safety property!)
- Except : F_{0,l} = false, for all non-initial locations

loc / lvl	0	1	2
<i>l</i> 0	true	true	true
4	false	true	true

Example

x = 0 x = 0 $[x \neq 1]$ [x = 1] (I_E)

- Transition still possible?
- $F_{1,l_1} \wedge T_{l_1 \rightarrow l_E} =$ true $\wedge x = 1 : SAT$

•
$$\rightarrow x = 1$$

loc / lvl	0	1	2
l ₀	true	true	true
<i>l</i> 1	false	true	true

Example

x = 0 x = 0 $(I_1) = [x \neq 1]$ x + 1 [x = 1] (I_E)

- Try to block x = 1 at l_1 at level 1
- Predecessor *l*₀ :
- $F_{0,l_0} \wedge T_{l_0 \rightarrow l_1} \wedge s' =$ true $\wedge x' = 0 \wedge x' = 1$: UNSAT
- \rightarrow add $x \neq 1$ to F_{1,l_1} and F_{0,l_1}

loc / lvl	0	1	2
<i>l</i> 0	true	true	true
<i>I</i> 1	false,	true,	true
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	

Example

x = 0 x = 0 $(h) = [x \neq 1]$ x + 1 [x = 1] (l_E)

- Try to block x = 1 at l_1 at level 1
- Predecessor *l*₁ :
- $F_{0,h} \land \neg s \land T_{h \to h} \land s' =$ (false $\land x \neq 1$) $\land x \neq 1 \land (x \neq 1 \land x' =$ x + 1) $\land x' = 1 : UNSAT$

•
$$\rightarrow$$
 add $x \neq 1$ to F_{1,l_1} and F_{0,l_1}

loc / lvl	0	1	2
l ₀	true	true	true
<i>I</i> 1	false,	true,	true
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	

Example

x = 0 x = 0 $(I_1) = [x \neq 1]$ x + 1 [x = 1] (I_E)

- Transition still possible?
- $F_{1,l_1} \wedge T_{l_1 \rightarrow l_E} =$ (true $\land x \neq 1$) $\land x = 1$: UNSAT
- $\bullet \ \ \text{Termination}? \to \text{No}$
- ightarrow continue with next iteration

loc / lvl	0	1	2
<i>l</i> 0	true	true	true
<i>I</i> 1	false,	true,	true
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	

Example

x = 0 x = 0 $(l_1) = [x \neq 1]$ x + 1 [x = 1] (l_E)

- Transition still possible?
- $F_{2,l_1} \wedge T_{l_1 \rightarrow l_E} =$ true $\wedge x = 1 : SAT$

•
$$\rightarrow x = 1$$

loc / lvl	0	1	2
<i>I</i> 0	true	true	true
<i>l</i> 1	false,	true,	true
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	

Example

6 x = 0[*x* ≠ 1] 4 [x = 1]ĺΕ

- Try to block x = 1 at l_1 at level 2
- Predecessor l₀ :
- $F_{1,l_0} \wedge T_{l_0 \rightarrow l_1} \wedge s' =$ true $\wedge x' = 0 \wedge x' = 1$: UNSAT
- \rightarrow add $x \neq 1$ to F_{2,l_1} and F_{1,l_1} and F_{0,l_1}

loc / lvl	0	1	2
l ₀	true	true	true
<i>I</i> 1	false,	true,	true,
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	<i>x</i> ≠ 1

Example

$$x = 0$$

$$x = 0$$

$$(l_1) = [x \neq 1]$$

$$x + 1$$

$$[x = 1]$$

$$(l_E)$$

- Try to block x = 1 at l_1 at level 2
- Predecessor *l*₁ :
- $F_{1,l_1} \wedge \neg s \wedge T_{l_1 \to l_1} \wedge s' =$ (true $\land x \neq 1$) $\land x \neq 1 \land (x \neq 1 \land x' =$ x + 1) $\land x' = 1$: SAT $\rightarrow x = 0$
- Proof-obligations : (1, l₁, x = 0),
 (2, l₁, x = 1)

loc / lvl	0	1	2
<i>I</i> 0	true	true	true
<i>l</i> 1	false,	true,	true,
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	<i>x</i> ≠ 1

Example

$$x = 0$$

$$x = 0$$

$$(l_1 \rightarrow [x \neq 1]]$$

$$[x = 1]$$

$$(l_E)$$

- Pick lowest Proof-obligation $(1, l_1, x = 0)$
- Predecessor *l*₀ :
- $F_{0,l_0} \wedge T_{l_0 \rightarrow l_1} \wedge s' =$ true $\wedge x' = 0 \wedge x' = 0$: SAT $\rightarrow x = 0$
- Proof-obligations : $(0, l_0, x = 0)$, $(1, l_1, x = 0), (2, l_1, x = 1)$
- Next : $(0, I_0, x = 0) \rightarrow \text{Error found }!$

loc / Ivl	0	1	2
l ₀	true	true	true
<i>I</i> ₁	false,	true,	true,
	<i>x</i> ≠ 1	<i>x</i> ≠ 1	<i>x</i> ≠ 1

Example

Remark : Dealing with infinite state space

Weakest Preconditions

- Use weakest preconditions on local transitions to calculate exact predecessors
- Can be expensive for large transitions •

Remark : Dealing with infinite state space

Weakest Preconditions

- Use weakest preconditions on local transitions to calculate exact predecessors
- · Can be expensive for large transitions

Predicate Abstraction

- Get concrete predecessors from model of SAT-query (like original PDR)
- Apply predicate abstraction and work with abstract states
- Random example : $(x = 0 \land y = 0) \rightarrow x = y$
- · When finding abstract transition with no concrete counterpart
 - ightarrow abstraction was too broad

 \rightarrow interpolate and refine abstraction (*x* = *y* \rightarrow (*x* = *y* \land *x* \geq 0))

Similar to CTIGAR

Implementation

Implementation in CPAchecker

Transitions

- CPAchecker can be configured to arbitrary block size
- Large Block Encoding currently used for PDR
- PredicateCPA used to get path formulas of edges between locations

Predicate Abstraction

- Component PredicateAbstractionManager of PredicateCPA used for • computing abstraction based on current predicates
- SMT-solver used to get interpolant that leads to new abstraction predicate

Outline

Introduction

2 Preliminaries

3 Original PDR

- Concepts
- Algorithm

PDR on Control Flow Automata : IC3CFA

- Changes to standard PDR
- Example
- Implementation

Summary

Summary

- PDR is a symbolic model checking algorithm for finite state systems based on SAT-solving, relative inductiveness, inductive strengthening
- Blocking phase : Identify CTI and recursively block it
- Propagation phase : Push clauses to next frame if they became inductive after blocking phase
- PDR can be extended to infinite state systems in multiple ways
- One way : Apply PDR directly to CFA (IC3CFA)
- Give every location its own set of stepwise overapproximations (frames)
- Check reachability of error location using single transitions between locations

Outlook

What still needs to be done

- Predicate abstraction
- · Check if it pairs well with location local frames

For the future

- One prover environment for each frame
- Keep frame clauses on prover stack (exploit incremental nature of PDR)
- · Parallel implementation (PDR is suitable for this)