
SMT-based Software Model Checking:
Experimental Comparison of Four

Algorithms
Matthias Dangl

Joint work with Dirk Beyer

University of Passau, Germany

SMT-based Software Model Checking

I Bounded Model Checking
(Cbmc, CPAchecker, Esbmc, ...)

I k-Induction
(CPAchecker, Esbmc, 2LS, ...)

I Predicate Abstraction
(Blast, CPAchecker, Slam, ...)

I Impact
(CPAchecker, Impact, Wolverine, ...)

I Property-Directed Reachability (PDR, also known as IC3)
(Seahorn, VVT, ...)

I ...

Matthias Dangl University of Passau, Germany 2 / 24

SMT-based Software Model Checking

I Bounded Model Checking
(Cbmc, CPAchecker, Esbmc, ...)

I k-Induction
(CPAchecker, Esbmc, 2LS, ...)

I Predicate Abstraction
(Blast, CPAchecker, Slam, ...)

I Impact
(CPAchecker, Impact, Wolverine, ...)

I Property-Directed Reachability (PDR, also known as IC3)
(Seahorn, VVT, ...)

I ...

Matthias Dangl University of Passau, Germany 2 / 24

Our Goals

I Perform an extensive comparative evaluation
I Confirm intuitions about strengths
I Determine potential of extensions and combinations

Matthias Dangl University of Passau, Germany 3 / 24

Approach

I Understand, and, if necessary, re-formulate the algorithms
I Implement all algorithms in one tool (CPAchecker)
I Run the algorithms on a large set of benchmarks
I Measure efficiency and effectiveness

Matthias Dangl University of Passau, Germany 4 / 24

Experimental Validity: All Algorithms in one Tool

Compare algorithms, not tools:
I Share same front-end code
I Share same utilities
I Share same SMT-solver integration
I Share algorithm-independent optimizations
→ Differences in performance must be caused by algorithms

Matthias Dangl University of Passau, Germany 5 / 24

Bounded Model Checking

I Bounded Model Checking:
I Biere, Cimatti, Clarke, Zhu: [TACAS’99]
I No abstraction
I Unroll loops up to a loop bound k
I Check that P holds in the first k iterations:

k∧
i=1

P(i)

I Good for finding bugs

Matthias Dangl University of Passau, Germany 6 / 24

k-Induction

I k-Induction generalizes the induction principle:
I No abstraction
I Base case: Check that P holds in the first k iterations:
→ Equivalent to BMC with loop bound k

I Step case: Check that the safety property is k-inductive:

∀n :
((k∧

i=1
P(n + i − 1)

)
=⇒ P(n + k)

)

I Stronger hypothesis is more likely to succeed
I Add auxiliary invariants
I Kahsai, Tinelli: [PDMC’11]
I Heavy-weight proof technique

Matthias Dangl University of Passau, Germany 7 / 24

k-Induction with Auxiliary Invariants

Induction:
1: k = 1
2: while !finished do
3: BMC(k)
4: Induction(k, invariants)
5: k++

Invariant generation:
1: prec = <weak>
2: invariants = ∅
3: while !finished do
4: invariants = GenInv(prec)
5: prec = RefinePrec(prec)

Matthias Dangl University of Passau, Germany 8 / 24

Predicate Abstraction

I Predicate Abstraction
I Graf, Saïdi: [CAV’97]
I Abstract-Interpretation technique
I Abstract domain constructed from a set of predicates π
I Use CEGAR to add predicates to π (refinement)
I Derive new predicates using Craig interpolation
I Good for finding proofs

Matthias Dangl University of Passau, Germany 9 / 24

Impact

I Impact
I "Lazy Abstraction with Interpolants"
I McMillan: [CAV’06]
I Counter-draft to predicate abstraction
I Abstraction is derived dynamically/lazily
I Solution to avoiding expensive abstraction computations
I Compute fixed point over three operations

I Expand
I Refine
I Cover

I Quick exploration of the state space
I Good for finding bugs

Matthias Dangl University of Passau, Germany 10 / 24

Experimental Comparison

I 4 779 verification tasks taken from SV-COMP’16
I 15 min timeout (CPU time)
I 15 GB memory
I Measured with BenchExec

Matthias Dangl University of Passau, Germany 11 / 24

All 3 459 bug-free tasks

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

C
P
U

 t
im

e
 (

s)

n-th fastest correct proof

BMC
k-Induction

Predicate abstraction
Impact

Matthias Dangl University of Passau, Germany 12 / 24

All 1 320 tasks with known bugs

 1

 10

 100

 1000

 0 100 200 300 400 500 600

C
P
U

 t
im

e
 (

s)

n-th fastest correct alarm

BMC
k-Induction

Predicate Abstraction
Impact

Matthias Dangl University of Passau, Germany 13 / 24

Category: Device Drivers

I Several thousands LOC per task
I Complex structures
I Pointer arithmetics

Matthias Dangl University of Passau, Germany 14 / 24

Category: Device Drivers
1 857 bug-free tasks:

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate Abstraction
Impact

Matthias Dangl University of Passau, Germany 15 / 24

Category: Device Drivers
263 tasks with known bugs:

 1

 10

 100

 1000

 0 10 20 30 40 50

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate Abstraction
Impact

Matthias Dangl University of Passau, Germany 16 / 24

Category: Event Condition Action Systems
I Several thousand LOC per task
I Auto-generated
I Only integer variables
I Linear and non-linear arithmetics
I Complex and dense control structure

if (((a24==3) && (((a18==10) && ((input == 6)
&& ((115 < a3) && (306 >= a3))))
&& (a15==4)))) {

a3 = (((a3 ∗ 5) + −583604) ∗ 1);
a24 = 0;
a18 = 8;
return −1;

}

Matthias Dangl University of Passau, Germany 17 / 24

Category: Event Condition Action Systems
I Several thousand LOC per task
I Auto-generated
I Only integer variables
I Linear and non-linear arithmetics
I Complex and dense control structure

if (((a24==3) && (((a18==10) && ((input == 6)
&& ((115 < a3) && (306 >= a3))))
&& (a15==4)))) {

a3 = (((a3 ∗ 5) + −583604) ∗ 1);
a24 = 0;
a18 = 8;
return −1;

}
Matthias Dangl University of Passau, Germany 17 / 24

Category: Event Condition Action Systems
734 bug-free tasks:

 1

 10

 100

 1000

 0 100 200 300 400 500

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

k-Induction
Predicate Abstraction

Impact

Matthias Dangl University of Passau, Germany 18 / 24

Category: Event Condition Action Systems

406 tasks with known bugs:

Only BMC and k-Induction find one bug (the same one).

Matthias Dangl University of Passau, Germany 19 / 24

Category: Product Lines

I Several hundred LOC
I Mostly integer variables, some structs
I Mostly simple linear arithmetics
I Lots of property-independent code

Matthias Dangl University of Passau, Germany 20 / 24

Category: Product Lines
332 bug-free tasks:

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate abstraction
Impact

Matthias Dangl University of Passau, Germany 21 / 24

Category: Product Lines
265 tasks with known bugs:

 1

 10

 100

 1000

 0 50 100 150 200 250

C
P
U

 t
im

e
 (

s)

n-th fastest correct result

BMC
k-Induction

Predicate abstraction
Impact

Matthias Dangl University of Passau, Germany 22 / 24

Summary

We reconfirm that
I BMC is a good bug hunter
I k-Induction is a heavy-weight proof technique: effective,

but slow
I CEGAR makes abstraction techniques (Predicate
Abstraction, Impact) scalable

I Impact is lazy, and explores the state space and finds bugs
quicker

I Predicate Abstraction is eager, and prunes irrelevant parts
and finds proofs quicker

Matthias Dangl University of Passau, Germany 23 / 24

Outlook

I Abstraction is required for scalability
I k-Induction needs some form of abstraction
I Maybe the ideas of k-Induction can be transferred to PDR

Matthias Dangl University of Passau, Germany 24 / 24

