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SMT-based Software Model Checking

I Bounded Model Checking
(Cbmc, CPAchecker, Esbmc, ...)

I k-Induction
(CPAchecker, Esbmc, 2LS, ...)

I Predicate Abstraction
(Blast, CPAchecker, Slam, ...)

I Impact
(CPAchecker, Impact, Wolverine, ...)

I Property-Directed Reachability (PDR, also known as IC3)
(Seahorn, VVT, ...)

I ...
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Our Goals

I Perform an extensive comparative evaluation
I Confirm intuitions about strengths
I Determine potential of extensions and combinations
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Approach

I Understand, and, if necessary, re-formulate the algorithms
I Implement all algorithms in one tool (CPAchecker)
I Run the algorithms on a large set of benchmarks
I Measure efficiency and effectiveness
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Experimental Validity: All Algorithms in one Tool

Compare algorithms, not tools:
I Share same front-end code
I Share same utilities
I Share same SMT-solver integration
I Share algorithm-independent optimizations
→ Differences in performance must be caused by algorithms
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Bounded Model Checking

I Bounded Model Checking:
I Biere, Cimatti, Clarke, Zhu: [TACAS’99]
I No abstraction
I Unroll loops up to a loop bound k
I Check that P holds in the first k iterations:

k∧
i=1

P(i)

I Good for finding bugs
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k-Induction

I k-Induction generalizes the induction principle:
I No abstraction
I Base case: Check that P holds in the first k iterations:
→ Equivalent to BMC with loop bound k

I Step case: Check that the safety property is k-inductive:

∀n :
(( k∧

i=1
P(n + i − 1)

)
=⇒ P(n + k)

)

I Stronger hypothesis is more likely to succeed
I Add auxiliary invariants
I Kahsai, Tinelli: [PDMC’11]
I Heavy-weight proof technique
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k-Induction with Auxiliary Invariants

Induction:
1: k = 1
2: while !finished do
3: BMC(k)
4: Induction(k, invariants)
5: k++

Invariant generation:
1: prec = <weak>
2: invariants = ∅
3: while !finished do
4: invariants = GenInv(prec)
5: prec = RefinePrec(prec)
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Predicate Abstraction

I Predicate Abstraction
I Graf, Saïdi: [CAV’97]
I Abstract-Interpretation technique
I Abstract domain constructed from a set of predicates π
I Use CEGAR to add predicates to π (refinement)
I Derive new predicates using Craig interpolation
I Good for finding proofs
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Impact

I Impact
I "Lazy Abstraction with Interpolants"
I McMillan: [CAV’06]
I Counter-draft to predicate abstraction
I Abstraction is derived dynamically/lazily
I Solution to avoiding expensive abstraction computations
I Compute fixed point over three operations

I Expand
I Refine
I Cover

I Quick exploration of the state space
I Good for finding bugs

Matthias Dangl University of Passau, Germany 10 / 24



Experimental Comparison

I 4 779 verification tasks taken from SV-COMP’16
I 15 min timeout (CPU time)
I 15 GB memory
I Measured with BenchExec
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All 3 459 bug-free tasks
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All 1 320 tasks with known bugs
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Category: Device Drivers

I Several thousands LOC per task
I Complex structures
I Pointer arithmetics
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Category: Device Drivers
1 857 bug-free tasks:
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Category: Device Drivers
263 tasks with known bugs:
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Category: Event Condition Action Systems
I Several thousand LOC per task
I Auto-generated
I Only integer variables
I Linear and non-linear arithmetics
I Complex and dense control structure

if (((a24==3) && (((a18==10) && ((input == 6)
&& ((115 < a3) && (306 >= a3))))
&& (a15==4)))) {

a3 = (((a3 ∗ 5) + −583604) ∗ 1);
a24 = 0;
a18 = 8;
return −1;

}
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Category: Event Condition Action Systems
734 bug-free tasks:
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Category: Event Condition Action Systems

406 tasks with known bugs:

Only BMC and k-Induction find one bug (the same one).
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Category: Product Lines

I Several hundred LOC
I Mostly integer variables, some structs
I Mostly simple linear arithmetics
I Lots of property-independent code
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Category: Product Lines
332 bug-free tasks:
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Category: Product Lines
265 tasks with known bugs:
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Summary

We reconfirm that
I BMC is a good bug hunter
I k-Induction is a heavy-weight proof technique: effective,

but slow
I CEGAR makes abstraction techniques (Predicate
Abstraction, Impact) scalable

I Impact is lazy, and explores the state space and finds bugs
quicker

I Predicate Abstraction is eager, and prunes irrelevant parts
and finds proofs quicker
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Outlook

I Abstraction is required for scalability
I k-Induction needs some form of abstraction
I Maybe the ideas of k-Induction can be transferred to PDR
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