Implementing PDR in CPAchecker

Gernot Zorneck

Faculty of Computer Science and Mathematics
University of Passau

September 23, 2016
Outline

1. Introduction

2. Preliminaries

3. Original PDR
 - Concepts
 - Algorithm

4. PDR on Control Flow Automata: IC3CFA
 - Changes to standard PDR
 - Example
 - Implementation

5. Summary
Outline

1 Introduction

2 Preliminaries

3 Original PDR
 - Concepts
 - Algorithm

4 PDR on Control Flow Automata: IC3CFA
 - Changes to standard PDR
 - Example
 - Implementation

5 Summary
Original IC3

Overview

- IC3: Incremental Construction of Inductive Clauses for Indubitable Correctness
- Also known as PDR: Property Directed Reachability
- Aaron Bradley: “SAT-Based Model Checking without Unrolling”, VMCAI 2011
- Symbolic model checking algorithm for finite state systems (bit-level)
- Based on SAT solving, (relative) inductivity, backward analysis
- No unrolling of transition relation needed
- Highly incremental - lots of small SAT-queries
- Quickly became a staple part in most modern model checkers
- Adapted to infinite state systems such as software (C-programs, . . .)
Inductive Strengthening

- Property is inductive \Rightarrow property is invariant
- **But**: Not every invariant property can be proved by induction
Inductive Strengthening

- Property is inductive \Rightarrow property is invariant
- But: Not every invariant property can be proved by induction
- Idea: Strengthen property
- Math example:
 \[
 \sum_{i=1}^{n} \frac{1}{i^2} \leq 2 \quad \text{vs.} \quad \sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n}
 \]
Inductive Strengthening

- Property is inductive \implies property is invariant
- **But** : Not every invariant property can be proved by induction
- Idea : Strengthen property
- Math example : $\sum_{i=1}^{n} \frac{1}{i^2} \leq 2$ vs. $\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n}$
- Plan : Create strengthening of property and prove it by induction
- This will prove the property
Outline

1 Introduction

2 Preliminaries

3 Original PDR
 - Concepts
 - Algorithm

4 PDR on Control Flow Automata: IC3CFA
 - Changes to standard PDR
 - Example
 - Implementation

5 Summary
Literal/Clause/Cube

- A **literal** is a propositional variable or its negation ($x, \neg y, \ldots$)
- A **clause** is a disjunction of literals ($x \lor \neg y$)
- A **cube** is a conjunction of literals ($x \land \neg y$)
- Therefore, the negation of a cube is a clause ($\neg (x \land \neg y) \equiv (\neg x \lor y)$)

Transition System

A **Transition System** $S : (\bar{x}, I(\bar{x}), T(\bar{x}, \bar{x}'))$ consists of

- a set \bar{x} of state variables
- the initial configuration of the system $I(\bar{x})$
- the transition relation $T(\bar{x}, \bar{x}')$
Preliminaries - Cont.

(Relative) Inductivity

Given a transition system $S : (\bar{x}, I(\bar{x}), T(\bar{x}, \bar{x}'))$:

- P is inductive, if $I \Rightarrow P$ and $P \land T \Rightarrow P'$
- P is inductive *relative* to F, if $I \Rightarrow P$ and $F \land P \land T \Rightarrow P'$

Safety property: P

A boolean formula that is always true for a given transition system

Inductive Strengthening

An inductive strengthening of a safety property P is a formula F, so that $F \land P$ is inductive
State
Assignment of values to **all** state variables of the transition system. Represented by a cube

Control Flow Automaton (CFA)
A *Control flow automaton* $A = \{ L, G, l_0, l_E \}$ consists of
- a set of locations $L = \{0, \ldots, n\}$ representing the program counter
- edges from $G \subseteq L \times QFFO \times L$ labeled with quantifier-free first order formulas describing the transition
- an initial location l_0
- an error location l_E
Outline

1. Introduction
2. Preliminaries
3. Original PDR
 - Concepts
 - Algorithm
4. PDR on Control Flow Automata: IC3CFA
 - Changes to standard PDR
 - Example
 - Implementation
5. Summary
Original PDR

General Concepts

Frame : F_i
- Overapproximation of reachable states in at most i steps from initial states
- Set of clauses (act as constraints regarding reachability)
- As formula : conjunction of clauses (CNF)

Counterexample to Inductiveness : CTI
State that can reach a non-property state (bad state) in one or more steps
Original PDR

General Concepts

Frame : F_i
- Overapproximation of reachable states in at most i steps from initial states
- Set of clauses (act as constraints regarding reachability)
- As formula: conjunction of clauses (CNF)

Counterexample to Inductiveness : CTI
State that can reach a non-property state (bad state) in one or more steps

- Maintain series of stepwise overapproximations F_0, \ldots, F_k for increasing k
- $F_0 = I$ and initially $F_i = P$ for $i \neq 0$ (assume P is invariant)
- Continuously refine frames by adding reachability information
- Derived from recursively backward-analyzing CTIs
Original PDR

General Concepts

Basic Invariants

- $F_0 \Leftrightarrow I$
- $F_i \Rightarrow P, \quad \forall 0 \leq i \leq k$ - “every frame satisfies P”
- $F_i \Rightarrow F_{i+1}, \quad \forall 0 \leq i < k$ - “every F_{i+1} is more general than F_i”
 \[\text{clauses}(F_{i+1}) \subseteq \text{clauses}(F_i) \]
- $F_i \land T \Rightarrow F'_{i+1}, \quad \forall 0 \leq i < k$ - “states in F_i transition to states in F_{i+1}”
Original PDR

General Concepts

Basic Invariants

- $F_0 \iff I$
- $F_i \Rightarrow P, \quad \forall 0 \leq i \leq k$ - “every frame satisfies P”
- $F_i \Rightarrow F_{i+1}, \quad \forall 0 \leq i < k$ - “every F_{i+1} is more general than F_i”
 \[
 \text{clauses}(F_{i+1}) \subseteq \text{clauses}(F_i)
 \]
- $F_i \land T \Rightarrow F'_{i+1}, \quad \forall 0 \leq i < k$ - “states in F_i transition to states in F_{i+1}”

⇒ Fixpoint reached if $\exists i$ so that $F_i = F_{i+1}$
⇒ Property holds
⇒ F_i is an inductive strengthening of the safety property P
PDR: Identify CTIs
Algorithm

check for 0-/1-step counterexample \((I \land \neg P / I \land T \land \neg P')\)

for \(k = 1\) to

- while (CTI exists \(\equiv F_k \land P \land T \Rightarrow P'\) not true)
 - get CTI \(s\) from model
 - % Blocking Phase %
 - prove \(s\) is unreachable in \(\leq k\) steps
 (this is where new clauses are learned)
 - if not possible \(\rightarrow\) error found

- % Propagation Phase %
- for \(i = 1\) to \(k\) and all clauses \(c\) in \(F_i\)
 - if \(c\) became inductive
 \(\equiv F_i \land c \land T \Rightarrow c'\) is true : add \(c\) to \(F_{i+1}\)
 - if \(\exists\ i\) so that \(F_i = F_{i+1}\) \(\rightarrow\) property holds
Blocking a state \(s \) at \(F_i \) : Proof Obligation \((s, i)\)

Block state \(s \) at \(F_i \) \equiv Prove \(s \) is unreachable in \(\leq i \) steps

- If \(i = 0 \) and \(s \) intersects with initial states \(\rightarrow \) error found
- Check: \(\neg s \) inductive relative to \(F_{i-1} \equiv F_{i-1} \land \neg s \land T \Rightarrow \neg s' \) is true
- No: try to block predecessor \(p \) of \(s \) at \(F_{i-1} \) first (DFS). Add **Proof Obligations** \((p, i - 1)\) and \((s, i)\)
- Yes: add \(\neg s \) to all frames \(F_1, \ldots, F_i \). Also add PO \((s, i + 1)\) if \(i < k \)
- Pick PO with lowest frame number next
- Retry previously failed attempts until \(s \) could be blocked at \(F_i \)
Algorithm : Important Improvements

Generalization

- Blocking one state \(s \) at a time is ineffective
- When adding \(\neg s \) at level \(i \) : find \(c \subseteq \neg s \) that is still inductive and add \(c \) instead
- \(c \) may exclude many more states than \(\neg s \)
 \[(\neg x \lor y) \rightarrow \neg x \]
- Drop literals that don’t actually contribute to result of induction query
 \[F_{i-1} \land \neg s \land T \Rightarrow \neg s' \]
- Use unsat-core, ternary simulation, . . .
Algorithm : Important Improvements

Lifting

- Similar intention as with generalization
- When computing a predecessor p of state s: find set of states that also transition to s
- Represented by a sub-cube of p

Subsumption

- Suppose $F_i = \{s\}$ with $s = x \lor y$ and we can add $\hat{s} = x$
- Note that $\hat{s} \Rightarrow s$ (or alternatively $\text{literals}(\hat{s}) \subset \text{literals}(s)$)
- s doesn’t represent more reachability info than \hat{s}
- Simply remove s
- Avoids redundancy and keeps frames small (easier SAT-queries)
Outline

1. Introduction

2. Preliminaries

3. Original PDR
 - Concepts
 - Algorithm

4. PDR on Control Flow Automata : IC3CFA
 - Changes to standard PDR
 - Example
 - Implementation

5. Summary
PDR on Control Flow Automata

Based on “IC3 Software Model Checking on Control Flow Automata” by T. Lange et al.

- Apply PDR directly to CFA
- Use SMT-solver instead of SAT-solver
- Check reachability of error location
- Use single transitions between locations (no unrolling needed)
- Create frames F_0, \ldots, F_k for every location
- Represents k-step reachability for this location, starting at l_0
PDR on Control Flow Automata

Based on “IC3 Software Model Checking on Control Flow Automata” by T. Lange et al.

PDR Relative Inductivity Check

When trying to block a state s at level $i \equiv (s,i)$

- $F_{i-1} \land \neg s \land T \land s'$
 (meaning: $F_{i-1} \land \neg s \land T \Rightarrow \neg s'$)

Adjusted Relative Inductivity Check

When trying to block a state s at location l at level $i \equiv (s,l,i)$

- **Case 1**: $F_{i-1,l_{\text{pred}}} \land T_{l_{\text{pred}} \rightarrow l} \land s'$, if $l \neq l_{\text{pred}}$

- **Case 2**: $F_{i-1,l_{\text{pred}}} \land \neg s \land T_{l_{\text{pred}} \rightarrow l} \land s'$, if $l = l_{\text{pred}}$

where l_{pred} is a predecessor location of l.

- Unsat \rightarrow add $\neg s$ to all $F_{j,l}$ where $j \leq i$

- Sat \rightarrow get predecessor state p and add POs $(p, l_{\text{pred}}, i - 1)$ and (s, l, i)
IC3CFA

Example

Initialization

- No 0-/1-step counterexamples
- $F_{i,l} = true$, for all locations l and levels i (we have no known safety property!)
- Except: $F_{0,l} = false$, for all non-initial locations

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
IC3CFA Example

First iteration: $k = 1$

- Transition still possible?
- $F_{l_0, l_1} \land T_{l_1 \rightarrow l_E} = true \land x = 1 \implies SAT$
- $\rightarrow x = 1$

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
IC3CFA

Example

First iteration: $k = 1$

- Try to block $x = 1$ at l_1 at level 1
- **Predecessor** l_0:
 - $F_{0,l_0} \land T_{l_0 \rightarrow l_1} \land s' =
 \begin{align*}
 true \land x' = 0 \land x' = 1 : & \text{ UNSAT} \\
 \rightarrow \text{ add } x \neq 1 \text{ to } F_{1,l_1} \text{ and } F_{0,l_1}
 \end{align*}$

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false, (x \neq 1)</td>
<td>true, (x \neq 1)</td>
<td>true</td>
</tr>
</tbody>
</table>

IC3CFA Example

First iteration: $k = 1$

- Try to block $x = 1$ at l_1 at level 1
- **Predecessor** l_1:
 - $F_{0,l_1} \land \neg s \land T_{l_1 \rightarrow l_1} \land s' = (false \land x \neq 1) \land x \neq 1 \land (x \neq 1 \land x' = x + 1) \land x' = 1 : UNSAT$
 - \rightarrow add $x \neq 1$ to F_{1,l_1} and F_{0,l_1}

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false, $x \neq 1$</td>
<td>true, $x \neq 1$</td>
<td>true</td>
</tr>
</tbody>
</table>
IC3CFA

Example

First iteration: \(k = 1 \)

- Transition still possible?
- \(F_{1,l_1} \land T_{l_1 \rightarrow l_E} = (true \land x \neq 1) \land x = 1 : UNSAT \)
- Termination? → No
- → continue with next iteration

```latex
\begin{tabular}{|c|c|c|c|}
\hline
loc / lvl & 0 & 1 & 2 \\
\hline
\hline
l_0 & true & true & true \\
\hline
l_1 & false, \( x \neq 1 \) & true, \( x \neq 1 \) & true \\
\hline
\end{tabular}
```
IC3CFA

Example

Second iteration: $k = 2$

- Transition still possible?
- $F_{2,l_1} \land T_{l_1 \rightarrow l_E} =$

 $true \land x = 1 : SAT$

- $\rightarrow x = 1$

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false, $x \neq 1$</td>
<td>true, $x \neq 1$</td>
<td>true</td>
</tr>
</tbody>
</table>
IC3CFA Example

Second iteration : $k = 2$

- Try to block $x = 1$ at l_1 at level 2
- **Predecessor** l_0 :
 - $F_{1,l_0} \land T_{l_0 \rightarrow l_1} \land s' =
 \text{true} \land x' = 0 \land x' = 1 : \text{UNSAT}$
 - \rightarrow add $x \neq 1$ to F_{2,l_1} and F_{1,l_1} and F_{0,l_1}

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false, $x \neq 1$</td>
<td>true, $x \neq 1$</td>
<td>true, $x \neq 1$</td>
</tr>
</tbody>
</table>
IC3CFA

Example

Second iteration : $k = 2$

- Try to block $x = 1$ at l_1 at level 2
- **Predecessor l_1**:
 - $F_{l_1,l_1} \land \neg s \land T_{l_1 \rightarrow l_1} \land s' = (true \land x \neq 1) \land x \neq 1 \land (x \neq 1 \land x' = x + 1) \land x' = 1 : SAT \rightarrow x = 0$
- Proof-obligations : $(1, l_1, x = 0), (2, l_1, x = 1)$

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>l_1</td>
<td>false, $x \neq 1$, true, $x \neq 1$</td>
<td>true, $x \neq 1$</td>
<td>true, $x \neq 1$</td>
</tr>
</tbody>
</table>
IC3CFA

Example

Second iteration : \(k = 2 \)

- Pick lowest Proof-obligation \((1, l_1, x = 0)\)
- **Predecessor** \(l_0 \):
 - \(F_{0,l_0} \land T_{l_0 \rightarrow l_1} \land s' = true \land x' = 0 \land x' = 0 : SAT \rightarrow x = 0 \)
 - Proof-obligations : \((0, l_0, x = 0), (1, l_1, x = 0), (2, l_1, x = 1)\)
 - Next : \((0, l_0, x = 0) \rightarrow \text{Error found !}\)

<table>
<thead>
<tr>
<th>loc / lvl</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_0)</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>(l_1)</td>
<td>false, (x \neq 1)</td>
<td>true, (x \neq 1)</td>
<td>true, (x \neq 1)</td>
</tr>
</tbody>
</table>
Remark: Dealing with infinite state space

Weakest Preconditions

- Use weakest preconditions on local transitions to calculate exact predecessors
- Can be expensive for large transitions
Remark: Dealing with infinite state space

Weakest Preconditions

- Use weakest preconditions on local transitions to calculate exact predecessors
- Can be expensive for large transitions

Predicate Abstraction

- Get concrete predecessors from model of SAT-query (like original PDR)
- Apply predicate abstraction and work with abstract states
- Random example: \((x = 0 \land y = 0) \rightarrow x = y\)
- When finding abstract transition with no concrete counterpart
 \(\rightarrow\) abstraction was too broad
 \(\rightarrow\) interpolate and refine abstraction \((x = y \rightarrow (x = y \land x \geq 0))\)
- Similar to CTIGAR
Implementation in CPAchecker

Transitions

- CPAchecker can be configured to arbitrary block size
- Large Block Encoding currently used for PDR
- PredicateCPA used to get path formulas of edges between locations

Predicate Abstraction

- Component PredicateAbstractionManager of PredicateCPA used for computing abstraction based on current predicates
- SMT-solver used to get interpolant that leads to new abstraction predicate
Outline

1. Introduction
2. Preliminaries
3. Original PDR
 - Concepts
 - Algorithm
4. PDR on Control Flow Automata : IC3CFA
 - Changes to standard PDR
 - Example
 - Implementation
5. Summary
Summary

- PDR is a symbolic model checking algorithm for finite state systems based on SAT-solving, relative inductiveness, inductive strengthening.
- Blocking phase: Identify CTI and recursively block it.
- Propagation phase: Push clauses to next frame if they became inductive after blocking phase.
- PDR can be extended to infinite state systems in multiple ways.
 - One way: Apply PDR directly to CFA (IC3CFA).
 - Give every location its own set of stepwise overapproximations (frames).
 - Check reachability of error location using single transitions between locations.
Outlook

What still needs to be done
- Predicate abstraction
- Check if it pairs well with location local frames

For the future
- One prover environment for each frame
- Keep frame clauses on prover stack (exploit incremental nature of PDR)
- Parallel implementation (PDR is suitable for this)